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Essentials

• Recombinant factor VIII (FVIII) is known to be

expressed at a low level in cell culture.

• To increase expression, we used codon-optimization of

a B-domain deleted FVIII (BDD-FVIII).

• This resulted in 7-fold increase of the expression level in

cell culture.

• The biochemical properties of codon-optimized BDD-

FVIII were similar to the wild-type protein.

Summary. Background: Production of recombinant factor

VIII (FVIII) is challenging because of its low expression.

It was previously shown that codon-optimization of a

B-domain-deleted FVIII (BDD-FVIII) cDNA resulted in

increased protein expression. However, it is well recog-

nized that synonymous mutations may affect the protein

structure and function. Objectives: To compare biochemi-

cal properties of a BDD-FVIII variants expressed from

codon-optimized and wild-type cDNAs (CO and WT,

respectively). Methods: Each variant of the BDD-FVIII

was expressed in several independent Chinese hamster

ovary (CHO) cell lines, generated using a lentiviral plat-

form. The proteins were purified by two-step affinity

chromatography and analyzed in parallel by PAGE-

western blot, mass spectrometry, circular dichroism, sur-

face plasmon resonance, and chromogenic, clotting and

thrombin generation assays. Results and conclusion: The

average yield of the CO was 7-fold higher than WT,

whereas both proteins were identical in the amino acid

sequences (99% coverage) and very similar in patterns of

the molecular fragments (before and after thrombin cleav-

age), glycosylation and tyrosine sulfation, secondary

structures and binding to von Willebrand factor and to a

fragment of the low-density lipoprotein receptor-related

protein 1. The CO preparations had on average 1.5-fold

higher FVIII specific activity (activity normalized to pro-

tein mass) than WT preparations, which was attributed to

better preservation of the CO structure as a result of con-

siderably higher protein concentrations during the produc-

tion. We concluded that the codon-optimization of the

BDD-FVIII resulted in significant increase of its expression

and did not affect the structure-function properties.

Keywords: coagulation factor VIII; hemophilia A; lentivirus;

LRP1 protein, human; von Willebrand factor.

Introduction

Factor VIII (FVIII) is an important component of

hemostasis, as its functional deficiency results in the bleed-

ing disorder hemophilia A. In blood coagulation, activated

FVIII serves as a cofactor of activated factor IX, which

activates factor X. FVIII is translated as a single-chain

polypeptide (SCh) with the domain structure of A1-A2-B-

A3-C1-C2, which is subjected to glycosylation, sulfation

and variable cleavages [1–3]. The resulting FVIII molecule

is a heterodimer composed of a heavy chain (HCh, A1-A2-

B domains, 90–210 kDa) and a light chain (LCh, A3-C1-

C2 domains, 80 kDa). In plasma, FVIII circulates in a

complex with von Willebrand factor (VWF). Upon site-

specific cleavage (activation) by thrombin or activated

factor X, FVIII converts into a heterotrimer A1/A2/A3-

C1-C2, which dissociates from VWF and performs its

cofactor function [4]. The clearance of FVIII depends on

several receptors, the most prominent of which is the low-

density lipoprotein receptor-related protein 1 (LRP) [5–8].
The introduction of recombinant FVIII (rFVIII) for

the treatment of hemophilia A reduced the risk of
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transmission of blood pathogens by products with

plasma-derived FVIII [9]. However, production of rFVIII

is challenging because of its low level of expression that

correlates with a low FVIII level in plasma (0.1 lg mL�1)

[10]. Among factors contributing to that are various inhi-

bitory elements present in both the gene [11–16] and pro-

tein [17,18]. A number of approaches to improve the

rFVIII expression have been developed. For gene deliv-

ery, a classical approach employed transfection of FVIII

cDNA followed by its amplification [19,20]. A lentiviral

system was found to be more effective for this purpose

[21,22], as it provides delivery of the gene into transcrip-

tionally active chromatin [23,24].

Improved production of rFVIII was achieved by dele-

tion of the B-domain, comprising about 40% of the mole-

cule [25–27]. Substitution of the B-domain for a small

fragment, preserving the flank sites for the protease cleav-

ages, resulted in improved production of FVIII [27–33].
The efforts to eliminate the use of serum in the culturing

media met additional challenges. It was shown that in

serum-free conditions, the secreted rFVIII mostly associ-

ates with the outer cell membrane, and the B-domain-

deleted FVIII (BDD-FVIII) is bound to the cells to an

even higher degree [34]. In fact, the primary serum com-

ponent, which stabilizes FVIII in media, is VWF. There-

fore, the stabilization of FVIII in serum-free media can

be achieved by co-expression with VWF [35,36]; other-

wise, the expressed FVIII can be harvested from the cells

at high ionic strength [28].

Most recently, improvement of expression of rFVIII

was achieved using synonymous codon changes (codon-

optimization) of its gene [37]. In a study by Ward et al.

[38], 907 of 1457 codons of a BDD-FVIII cDNA were

altered, resulting in removal of cryptic splice sites, inter-

nal ribosomal entry sites, AT-rich and GC-rich sequences

and RNA secondary structures. Several variants of the

codon-optimized and respective non-optimized constructs

were compared for expression. In cultured cells (293T),

the secretion of optimized variants was significantly

increased. In hemophilia A mice, these constructs resulted

in a significantly higher FVIII activity in plasma and

improved hemostasis. However, biochemical properties of

the codon-optimized BDD-FVIII variants were not evalu-

ated, which left the following concerns unaddressed.

It is known that synonymous mutations may affect the

protein post-translational modifications (PTMs), confor-

mation, function, stability and even the fidelity of the

amino acid sequence [39,40]. In particular, codon usage

may regulate the protein translation rate, including the

pausing at certain mRNA sites. Such pausing may be

required for proper self-folding of the nascent polypep-

tide, occurring step-wise via spatial interactions of its

non-sequential segments. A change in codon usage may

change the translation rate and result in an alternative

protein folding [41,42], which may affect the PTMs and

functional properties [39,40]. In clinical use of the protein,

these changes may result in increased immunogenicity,

altered pharmacokinetics and pharmacodynamics, and

decreased bioactivity [43]. These concerns are especially

relevant to such complex proteins as FVIII.

Thus, the major aim of this study was to compare

properties of a BDD-FVIII expressed from a codon-opti-

mized cDNA (CO) with the protein expressed from the

wild-type cDNA (WT). Both cDNAs were designed to

encode a B-domain substitute fragment with a site for

O-glycosylation [30] to improve solubility of the molecule,

and the remaining cDNA of CO was identical to that

described by Ward et al. [38]. For protein expression, we

employed a lentivirus-based platform with use of multiple

rounds of transduction to increase the gene copy number

[22] and a two-step affinity chromatography for protein

purification. To consider possible variability of WT and

CO due to clonal selection, each protein was produced

from several independent clonal cell lines and these prepa-

rations were analyzed in parallel for various biochemical

parameters. We found that the codon-optimization of the

BDD-FVIII cDNA resulted in a significant increase of

yield and did not affect the structural and functional

properties of the protein.

Materials and methods

Reagents

Commercial FVIII products, Xyntha (Pfizer Inc., New

York, NY, USA) and Novoeight (Novo Nordisk, Bags-

vaerd, Denmark), were purchased from the National

Institutes of Health (NIH) Pharmacy (Bethesda, MD,

USA). 8th International Standard (IS) for FVIII Concen-

trate was from the National Institute for Biological Stan-

dards and Control (South Mimms, UK). VWF (FVIII

free) was from Haematologic Technologies Inc. (Essex

Junction, VT, USA). Recombinant LRP cluster IV was

from R&D Systems (Minneapolis, MN, USA). FVIII

congenitally deficient plasma was from HRF Inc.

(Raleigh, NC, USA). Anti-FVIII antibodies were sheep

polyclonal (CedarLane, Burlington, NC, USA) and ESH8

(American Diagnostica Inc., Stamford, CT, USA).

Generation of vectors for expression of FVIII variants

In the design, we used numbering of FVIII residues from

the first residue of the mature protein amino acid

sequence (NP_000123). For generation of the constructs,

we used FVIII cDNA obtained from Dr Steven Pipe

(University of Michigan) and a codon-optimized cDNA

described previously [38]. Using the standard DNA clon-

ing technique, in each gene, the B-domain substitute frag-

ment coding sequence was modified to that coding a

polypeptide SFSQNSRHPSQNPPVLKRHQR [30] and

the C-terminus coding sequence was fused with that cod-

ing a Strep/10xHis tag with thrombin and Tobacco Etch
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Virus endopeptidase cleavage sites for the tag removal

with or without activation of the BDD-FVIII (Figs 1A

and S2). The resulting expression cassettes were inserted

into pLNT/SFFV-MCS vector with the Spleen Focus

Forming Virus promoter obtained from Dr Steven Howe

(London, UK). The lentiviruses carrying the WT and CO

cassettes were produced as described [38,44].

Generation of cells expressing FVIII variants

The cells, BHK-M (obtained from Dr Christopher Doer-

ing, Emory University), SK-Hep-1 and CHO cells (Sigma-

Aldrich, St Louis, MO, USA) were cultured in respective

media supplemented with 10% fetal bovine serum. For

testing expression of FVIII variants, each cell line was

transduced with the respective vector. For generation of

cell lines stably expressing both proteins, CHO cells were

transduced four times with the respective vectors as

described [22], and the respective clonal lines were isolated

using standard single-cell cloning by limited dilution in 96-

well plates and testing each clone for FVIII secretion by

enzyme-linked immune sorbent assay (ELISA).

FVIII protein quantitation

Factor VIII was quantitated using an ELISA Protein

Detector kit (Kierkegaard and Perry Laboratories,

Gaithersburg, MD, USA) and an in-house FVIII stan-

dard, with concentration established by the absorbance

at 280 nm as previously described [45]. The samples

were serially diluted with a 2-fold step and analyzed in

duplicates. The polyclonal anti-FVIII antibodies were

used for the capture step and ESH8 antibody was used

for the detection. Standard curves were obtained from

six duplicate dilutions relating log of protein

concentration to absorbance. The measurements were

performed in three experiments. Quantitation of the

purified FVIII variants by ELISA was confirmed by the

absorbance at 280 nm.

Analysis of FVIII variants by polyacrylamide gel

electrophoresis (PAGE) and western-blot (WB)

Protein samples were resolved in a 4–12% SDS gel fol-

lowed by staining with a SimplyBlue Safe Stain or Sil-

verQuest Stain (Thermo Scientific, Waltham, MA, USA).

By PAGE-WB, the protein bands were detected using the

polyclonal anti-FVIII antibodies. For thrombin cleavage

analysis, the samples were treated with thrombin (0.001

IU per 0.8 mg of protein) for 10 min at 37 �C; the reac-

tion was terminated by addition of Phe-Pro-Arg-chloro-

methylketone up to 7 lM followed by PAGE.

Expression and purification of FVIII variants

The CHO cells expressing either WT or CO were cultured

in multi-layer 1000-cm2 flasks (EMD Millipore, Darm-

stadt, Germany); the medium was collected daily,

replaced and kept at �30 °C. The samples were pooled,

filtered and loaded onto a HisTrap Excel column (GE

Healthcare, Pittsburgh, PA, USA) in 20 mM Bis-Tris,

0.5 M NaCl, 5 mM CaCl2, 0.04% NaN3, 0.01% polysor-

bate 80, pH 7.4. The column was washed with the buffer

containing 10 mM imidazole, and the bound protein was

eluted with the buffer containing 0.5 M imidazole. The

eluate was diluted with two volumes of 20 mM Bis-Tris,

5 mM CaCl2, 0.04% NaN3, 0.01% polysorbate 80, pH

7.0, and loaded onto a column with VIIISelect sorbent

(GE Healthcare) [46] and equilibrated with the buffer

containing 150 mM NaCl. The column was washed with
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Fig. 1. The structure of the factor VIII (FVIII) variants and their expression in different cell lines. (A) Design of the B-domain-deleted FVIII

(BDD-FVIII) encoded by either wild-type or codon-optimized genes. The BDD-FVIII primary translation product is designated as SCh, the

protein domains are designated as A1, A2, A3, C1 and C2, fragments of the mature protein (heterodimer) are designated as HCh and LCh

and the B-domain substitute fragment is designated as Linker (connecting the A2 and A3 domains). The C-terminal tag (Tag), composed of 40

amino acids (4.6 kDa), includes the Strep/10xHis, thrombin and Tobacco Etch Virus endopeptidase recognition sites. (B) Analysis of expression

of the wild-type BDD-FVIII (WT) and codon-optimized BDD-FVIII (CO) in BHK-M, SK-Hep-1 and CHO cells. Each cell line was trans-

duced with either WT or CO construct; after 72 h, the cells’ media were analyzed by PAGE-WB (western blot) with anti-FVIII polyclonal anti-

bodies (mostly reacted with the HCh). In contrast to a BDD-FVIII control (Xyntha), the LCh species of the WT and CO, having the C-

terminal tags, were not resolved from the respective HCh species, but were detectable by an anti-LCh antibody (data not shown).
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20 mM HEPES, 5 mM CaCl2, 1 M NaCl, 0.04% NaN3,

0.02% polysorbate 80, pH 7.0, followed by elution of the

protein with 20 mM HEPES, 5 mM CaCl2, 0.9 M L-Argi-

nine, 45% (v/v) propylene glycol, 0.02% polysorbate 80,

0.04% NaN3, pH 7.0 [46]. The eluate was dialyzed

against 20 mM histidine, 500 mM NaCl, 5 mM CaCl2,

9 g L�1 sucrose, 0.005% polysorbate 80, pH 7.2, ali-

quoted and stored at �80 °C.

Nanospray liquid chromatography tandem mass

spectroscopy assay (LC/MS/MS)

The protein (16 lg) samples were processed with and with-

out Deglycosylation Enzyme Mix (New England Biolabs,

Ipswich, MA, USA) in duplicates, purified by PAGE,

digested with either trypsin or chymotrypsin as previously

described [47] and analyzed using a Q-Exactive hybrid

Quadrupole-Orbitrap Mass Spectrometer and Dionex Ulti-

Mate 3000 RSLCnano System (Thermo Scientific). For

peptide identification and protein assembly, the data were

analyzed against the FVIII sequence (NP_000123) and the

human protein database from the National Center for Bio-

technology Information (NCBI) using the SEQUEST and

percolator algorithms through the Proteome Discoverer

1.4.1 platform (Thermo Scientific).

Circular dichroism assay (CD)

Far-UV CD spectra of proteins (0.1–0.4 mg mL�1 in

10 mM HEPES, 150 mM NaCl, 5 mM CaCl2 and 0.005%

polysorbate 80, pH 7.4, in 0.5-mm path length quartz

cuvettes) were acquired within 180–260 nm at

25 � 0.2 °C using a Jasco J-815 Spectropolarimeter

(Jasco, Oklahoma City, OK, USA). For the secondary

structure estimate, each spectrum was converted into

residual ellipticity and analyzed using the CDPro/CON-

TIN program.

FVIII activity measurements

The chromogenic substrate assay was performed using

the Coatest SP4 Factor VIII kit (Chromogenix, West

Chester, OH, USA). The samples were diluted up to

one international unit (IU)/mL in FVIII-deficient

plasma, and further dilutions were performed in a buf-

fer supplied with the kit. One-stage clotting assay was

performed using a micro-centrifugal analyzer ACL Elite

Pro and activated partial thromboplastin time (APTT)

reagent SynthAFax (Instrumentation Laboratory, Bed-

ford, Massachusetts, USA). An activated factor XI and

tissue factor-activated thrombin generation assay (TGA)

was performed as described [48], and the FVIII activity

was determined based on thrombin peak height and

time-to-peak parameters. In all assays, the calibration

curves were prepared using the 8th IS for FVIII

Concentrate.

Surface plasmon resonance assay (SPR)

The measurements were performed using Biacore 3000

(GE Healthcare). Either VWF or LRP cluster IV was

covalently immobilized on a CM5 chip and tested for bind-

ing to FVIII variants as described previously [6]. Between

injections, the chip with immobilized VWF was regener-

ated by 20 mM HEPES, 0.35 M CaCl2, 0.6 M NaCl, pH

7.4, and the chip with immobilized cluster IV was regener-

ated by 0.1 M phosphoric acid. From the association and

dissociation signals, the respective signals from the blank

flowpath were subtracted, and the kinetic parameters were

derived using the BIAevaluation 4.1.1 program.

Results

Expression of FVIII variants

Upon transduction of the WT and CO constructs into the

BHK-M, SK-Hep-1 and CHO cells, we found that all the

cells secreted CO at significantly higher levels than WT

(Fig. 1B). However, the BHK-M cells secreted both proteins

mostly in a single-chain form, whereas two other cell lines

secreted the proteins in predominantly processed form (i.e. as

heterodimers of the HCh and LCh). Our attempts to produce

the clonal isolates using SK-Hep-1 cells were not successful,

thus we proceeded with the use of CHO cells. Using these

cells, we produced three clones expressing WT and six clones

expressing CO. To test stability of proteins’ expression,

selected clonal lines were cultured for 29 days; the media

were replaced daily and assessed for FVIII antigen. We

found that secretion of both WT and CO increased during

the first 12 days of cultivation and then was stable (Fig. S1).

FVIII variants purification and PAGE analysis

Three preparations each of WT and CO were isolated

from different cell lines using two-step affinity chromatog-

raphy (Fig. 2A). The average yield of CO was 7-fold

higher than WT (423 � 55 and 60 � 40 lg L�1 media,

respectively, Fig. 2B). By PAGE, both WT and CO corre-

sponded to a BDD-FVIII control (Fig. 2C). A broad

appearance of the HCh and LCh bands was attributed to

heterogeneity in truncation and glycosylation, previously

described for FVIII [27,30,31]. Upon treatment of selected

samples of WT and CO with thrombin (Fig. 2D), the

resulting fragments corresponded to the pattern of acti-

vated FVIII [30,49,50].

FVIII variants structures by LC/MS/MS

Two preparations each of WT and CO were processed

with or without deglycosylation, followed by site-specific

proteolysis with either trypsin or chymotrypsin, and the

resulting peptides were identified. Both WT and CO

amino acid sequences were covered at about 99% of the
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BDD-FVIII sequence (Fig. S2). The sites of PTMs of

both WT and CO were found to be the same and had

similar occupancy (Table 1). The identified PTMs were

N-glycosylation of asparagines 41, 239, 1810 and 2118,

O-glycosylation of Ser-750 and sulfation of tyrosines 346,

718, 719, 723, 1664 and 1680, corresponding to FVIII

PTMs described previously [30,32,49,51]. In each of WT

and CO, we also identified three new PTMs: N-glycosyla-

tion of Asn-235, O-glycosylation of Ser-568 and sulfation

of Tyr-729.
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Fig. 2. Purification and analysis of the factor VIII (FVIII) variants by PAGE. (A) Purity of samples from the purification steps: the starting

medium (Medium), Ni-column eluate (HisTrap) and VIIISelect-column eluate (VIIISel). The reference lanes were loaded with a B-domain-

deleted FVIII (BDD-FVIII) control (Xyntha) and a molecular weight standard (St). (B) Protein yields in preparations of the wild-type BDD-

FVIII (WT) (dark grey bars) and codon-optimized BDD-FVIII (CO) (light grey bars) purified from the respective CHO cell clonal lines

(n = 1). (C) Final purity of the proteins: lanes 2–4, WT (clones 1H1, 1G1 and 1A3); lanes 5–7, CO (clones 3F1, 3D4 and 3B1). The respective

BDD-FVIII fragments are marked as SCh, HCh and LCh. Because of the presence of the C-terminal tags, the LCh bands of WT and CO were

not resolved from the HCh bands. (D) Thrombin-cleavage analysis of WT (clone 1H1) and CO (clone 3D4). Before the gel run, the samples

were (+) or were not (�) treated with thrombin: WT (lanes 2 and 3), CO (lanes 4 and 5) and Xyntha (lanes 6 and 7). The respective fragments

of thrombin-cleaved BDD-FVIII species are marked as A1, A2 and A3-C1-C2. Notably, the mobility of thrombin-cleaved LCh species of both

WT and CO became similar to that of the LCh of Xyntha as a result of removal of the respective C-terminal tags. The gels were stained with

either a Coomassie-based reagent (A) or a silver-based reagent (C and D).
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FVIII variants secondary structures by CD

The folding of selected preparations of the WT and CO

was assessed by far-UV CD in comparison with a BDD-

FVIII control. Figure 3(A) shows an overlay of the nor-

malized spectra; each of these exhibited a strong negative

extremum at 219 nm, typical for the b-structure-rich pro-

teins and reported for FVIII [27,52–54]. The estimated

percentage of the b-structures, including b-sheet and b-
turn elements, was similar between the samples (Fig. 3B)

and consistent with such data reported for other rFVIII

variants [27,55]. These results indicated similarity of the

WT and CO secondary structures.

FVIII variants activity testing

We assumed that manifestation of FVIII activity would

be the most informative for correctness of the overall WT

and CO structures. First, we compared the specific activi-

ties, calculated as ratios of the activities by a chromogenic

assay to protein concentration (IU mg�1). Three prepara-

tions each of WT and CO were tested, which showed sim-

ilarity between the preparations of each FVIII variant.

However, the average specific activity of the CO was 1.5-

fold higher than WT, although not statistically significant

using the two-tailed t-test (Table 2). We assumed that

such a difference could reflect better structural preserva-

tion of the CO because of its consistently higher concen-

trations during the production.

Because the B-domain deletion may be associated with

assay-dependent discrepancy in the FVIII activity

[48,56], the WT and CO were additionally tested by clot-

ting and thrombin generation assays. To compare

results, the values (IU mL�1) were normalized to those

determined by the chromogenic assay. As the former

experiment showed similarity of specific activities

between the preparations of each WT and CO, we lim-

ited this analysis by testing two preparations per each

FVIII variant. The WT and CO samples had compara-

ble ratios of the activities based on clotting time

(Fig. 4A), thrombin peak height (Fig. 4B) and time-to-

peak (Fig. 4C). Compared with the BDD-FVIII controls,

the WT and CO samples had the higher ratios based on

the peak height (Fig. 4B) and time-to-peak (Fig. 4C,D).

We attributed these differences to differences in quality

between our samples and control samples (protein qual-

ity, content of impurities and buffer formulation). Thus,

the WT and CO samples behaved similarly in the

assays.

FVIII variants interactions with VWF by SPR

Factor VIII has an extended site for binding to VWF

[57]. To evaluate the structures of WT and CO, the

selected samples of both proteins and a BDD-FVIII

control were tested for binding to immobilized VWF

(Fig. 5A). All variants of FVIII were found to have

similar kinetic parameters for the binding (Fig. 5B),

which were in accordance with such data reported pre-

viously for other rFVIII variants binding to VWF

[31,32,58].

FVIII variants interactions with LRP cluster IV by SPR

Factor VIII has also an extended site for binding to LRP

[59], in particular to its cluster IV [60]. We evaluated the

Table 1 Post-translational modifications of the factor VIII variants*

Modification

Modified

residue

WT† (%)

clone 1H1

WT‡ (%)

clone 1G1 CO† (%) clone 3D4 CO‡ (%) clone 3F1 Comment

N-linked glycosylation Asn-41 100.0 100.0 100.0 85.5 � 0.0 Known [30,32,49,51]

Asn-235 100.0 95.6 � 0.3 87.2 74.3 � 7.3 New

Asn-239 100.0 100.0 94.4 � 7.9 80.8 � 7.4 Known [30,32,49,51]

Asn-1810 84.5 � 1.7 75.5 � 0.2 72.6 � 14.3 70.1 � 2.4 Known [30,32,49,51]

Asn-2118 100.0 86.8 � 1.0 100.0 84.5 � 2.3 Known [30,32,49,51]

O-linked glycosylation Ser-568 12.0 4.4 � 0.1 14.3 4.5 � 3.3 New

Ser-750 5.9 12.4 � 2.0 23.9 11.3 � 11.0 Known [30]

Tyrosine sulfation Tyr-346 ND§ 100.0 100.0 100.0 Known [30,32,51]

Tyr-718 ND 11.0 � 5.7 21.4 11.4 � 5.8 Known [32]

Tyr-719 ND 5.9 � 4.8 28.6 8.1 � 1.1 Known [30,32,51]

Tyr-723 ND 35.2 � 10.3 ND 23.8 � 19.8 Known [32]

Tyr-729 ND 47.9 � 11.2 28.6 56.7 � 26.8 New

Tyr-1664 100.0 100.0 100.0 100.0 Known [30,32,51]

Tyr-1680 51.5 � 2.2 71.2 � 3.4 64.7 � 6.3 72.2 � 4.0 Known [30,32,51]

*Results of the liquid chromatography tandem mass spectroscopy assay (LC/MS/MS) analysis of wild-type BDD-FVIII (WT) (clones 1H1 and

1G1) and codon-optimized BDD-FVIII (CO) (clones 3D4 and 3F1) obtained in two experiments. In experiment 1, we compared the results for

the clones 1H1 and 3D4, and in experiment 2, we compared the results for the clones 1G1 and 3F1. The values show percentage of peptides

containing the respective modified residues � standard deviation (SD). †In experiment 1, the SD was calculated if two or more different pep-

tides containing the same modification residual were detected. ‡In experiment 2, the standard deviation was calculated based on the results of

duplicate measurements. §Not determined.
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structures of WT and CO by testing their interactions

with immobilized recombinant cluster IV in a similar

assay set-up to the above experiment. As previously

reported, because of the complexity of FVIII and LRP

interaction, their binding sensorgrams could not be ade-

quately fitted with any of the standard models [58,61].

This was the case in our experiment (Fig. 5C); thus we

limited our analysis to visual evaluation of the sensor-

grams. The WT and CO sensorgrams were similar and, in

turn, similar to sensorgrams for a BDD-FVIII and LRP

reported previously [58].

Discussion

In our study, we investigated expression, purification and

biochemical properties of a BDD-FVIII encoded by either

a codon-optimized or the wild-type cDNA. Several prepa-

rations each of WT and CO were produced from indepen-

dent CHO cell clones that resulted on average in a 7-fold

higher yield of the CO. This increase of expression was

similar to that observed upon transduction of a human

cell line by the codon-optimized BDD-FVIII (SQ FVIII)

cDNA in the study by Ward et al. [38]. However, our

major aim was to verify preservation of biochemical

properties of the protein, based on the concerns outlined

in the introduction. In the majority of further assays, sev-

eral independent preparations each of WT and CO were

tested in parallel to minimize any possible effect of

genetic variability between the production cell lines on

protein structure.

The structural characterizations of WT and CO showed

their high similarity to each other and to a BDD-FVIII

control. In particular, LC/MS/MS showed the same dis-

tribution of the PTM sites with similar occupancy

(Table 1). In regard to the PTMs known for FVIII

[30,32,49,51], we confirmed four sites with N-glycosyla-

tion, one site with O-glycosylation and six sites with

tyrosine sulfation. We also found additional PTMs:

N-glycosylation of Asn-235 (belonging to a motif not

common for N-glycosylation [62]), O-glycosylation of

Ser-568 and sulfation of Tyr-729. It is unclear whether

the newly found PTMs occur in vivo or appeared under

our experimental conditions because, in particular, glyco-

sylation can depend on the culturing conditions [63,64].

In this regard, the sulfation of Tyr-1680, critical for the

binding to VWF [65], was observed at 50–70%, whereas

it was above 90% in other studies [51], and the O-glyco-

sylation of Ser-750 was 6–24%, whereas it was about

65% in another study [30]. Notably, the literature indi-

cates that the PTM sites of FVIII, expressed in the CHO

and human cells, are the same [30,32,49,51] and CHO

cells are used for manufacturing of some FVIII products
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Fig. 3. Analysis of the factor VIII (FVIII) variants’ secondary struc-

tures by far-UV circular dichroism (CD). (A) The samples of wild-

type BDD-FVIII (WT) (clone 1H1), codon-optimized BDD-FVIII

(CO) (clone 3D4) and a BDD-FVIII control (Xyntha) were recorded

in triplicates and normalized to the same protein concentration

(~0.2 µM). The baseline was subtracted by the running buffer as blank

prior to each measurement. Similar spectra were obtained for CO

clone 3B1 (data not shown). (B) Estimates of the secondary structure

elements: a-helix, total of regular and distorted (H); b-sheet, total of
regular and distorted (S); b-turns (T) and unordered (U). [Color fig-

ure can be viewed at wileyonlinelibrary.com]

Table 2 Specific activity of the factor VIII (FVIII) variants*

Group Specific activity (IU mg�1) Average SD

CI

LL UL

WT 2630 � 320 2521 � 265 2064 � 269 2405 300 1659 3151

Clone 1H1 1G1 1A3

CO 4456 � 258 3321 � 237 3115 � 146 3631 722 1837 5424

Clone 3F1 3D4 3B1

*The specific activity was determined for each preparation of the wild-type BDD-FVIII (WT) (clones 1H1, 1G1 and 1A3) and codon-optimized

BDD-FVIII (CO) (clones 3F1, 3D4 and 3B1). In each sample, the FVIII activity was measured by the chromogenic assay and protein concen-

tration was determined by ELISA (confirmed by the absorbance at 280 nm); the specific activity was calculated as ratio of activity to protein

concentration. Shown values are means � SD of three independent experiments. SD, standard deviation; CI, confidence interval; LL, low limit

and UL, upper limit, calculated using the two-tailed t-test. This test indicated that the difference between average values of specific activities

was not statistically significant (P = 0.083).
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(Advate, Xyntha (Refacto) and Novoeight; information

from the package inserts).

The evaluation of folding of WT and CO was based on

assessment of the secondary structures, FVIII activity and

binding to VWF and to LRP cluster IV. The activity

manifestation was assumed to be the most indicative for

correctness of the overall structure, as it is dependent on

FVIII interactions with several ligands within the tenase

complex. Unexpectedly, the average specific activity of

the CO was found to be 1.5-fold higher than WT. This

difference was not statistically significant because of the

wide confidence intervals (Table 2) and was not due to

difference in the proteins’ secondary structures, assessed

by CD. We attributed this difference to better preserva-

tion of the CO protein because of its considerably higher

levels at all production steps, as high protein concentra-

tion is known to stabilize the molecule. In this regard, the

specific activities of commercial BDD-FVIII products,

having relatively high concentrations during production,

are markedly higher (3200–14 000 IU mg�1) [45] than

those found for WT and CO. Also, we found differences

in manifestation of FVIII activity between both the WT

and CO and two BDD-FVIII controls. These were earlier

formation of thrombin by our samples in TGA and

higher ratios of their activities by clotting or thrombin

generation assays to the respective activities by chro-

mogenic assay (Fig. 4). Most likely, these differences were

a result of differences in quality of preparations. In par-

ticular, our samples contained higher abundance of the

single-chain BDD-FVIII, which is known to have altered

in vitro activity [66], and could have contained pre-

activated FVIII, accounting for the earlier thrombin for-

mation. However, our results clearly showed that the

codon-optimization did not negatively affect the BDD-

FVIII properties, which supports suitability of using this

protein as an equivalent of FVIII in relevant applications.

A reasonable question would be whether such protein

can be used for treatment of hemophilia A. Currently, a

number of variants of codon-optimized FVIII have been

patented [38,67,68] and some of them were studied [69] or

are under development for gene therapy of hemophilia A

[70,71]. In this regard, it would be of interest to
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Fig. 4. Characterization of the factor VIII (FVIII) variants activity by the chromogenic, clotting and thrombin generation assay (TGA) assays.

In each assay, the activity of wild-type BDD-FVIII (WT), codon-optimized BDD-FVIII (CO) (the respective clone numbers are shown) and

the BDD-FVIII controls, Xyntha and Novoeight (N8), was determined using the 8th IS for FVIII (IS FVIII). Bars show relative activities

(means � SD, n = 3) determined by the chromogenic assay vs. clotting assay (A), thrombin generation peak height (B) and time-to-peak (C).

(D) TGA curves for representative samples of WT (clone 1H1) and CO (clone 3D4); shadows indicate standard deviation of the mean (n = 2).
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characterize the properties of the CO in vivo. Notably, a

clinical testing of a codon-optimized factor IX demon-

strated its safety and efficacy for treatment of hemophilia

B [72,73] and resulted in its approval by the U.S. Food

and Drug Administration. These trends indicate that new

therapeutic products based on codon-optimized FVIII

will appear in the future. During evaluation of such prod-

ucts, the potential risks associated with changing the cod-

ing sequence should be thoroughly evaluated. In addition

to the known concerns, upon the use of such constructs

in gene therapy, there is a possibility of in vivo translation

of out-of-frame novel polypeptides, which may be

immunogenic and interfere with metabolism [39]. The

respective preclinical studies should address these con-

cerns on a case-by-case basis.
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Fig. 5. Binding of the factor VIII (FVIII) variants to von Willebrand factor (VWF) and low-density lipoprotein receptor-related protein 1
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binding to the wild-type BDD-FVIII (WT) (clone 1H1), codon-optimized BDD-FVIII (CO) (clone 3F1) and a BDD-FVIII control (Xyntha)
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sorgrams to the 1 : 1 (Langmuir) binding model. (B) The derived kinetic constants for interactions between the FVIII variants and VWF. (C)
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Supporting Information 

 
 
 
Fig. S1. Time-course of the FVIII variants expression by CHO cells clonal lines.  The cells expressing 
WT (clone 1H1) and CO (clone 3F1), were cultured in multi-layer flasks for 29 days.  From the day three, 
the media were replaced daily and quantitated for the secreted FVIII antigen by ELISA. 
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Fig. S2. The amino acid sequences of the FVIII variants by LC/MS/MS.  The analysis was performed in 

two independent experiments using the WT preparations isolated from the clonal lines 1H1 and 1G1, and 

the CO preparations isolated from the clonal lines 3D4 and 3F1.  Amino acid residues detected with the 

high confidence (1% false discovery rate) are highlighted in grey.  Residues with post-translational 

modifications are shown in red.  The sequence was based on human FVIII (NCBI reference NP 000123); 

the numbering of amino acids corresponds to that of the mature peptide of full-length human factor VIII. 

WT sequence coverage (99.12%) 
Heavy Chain 
ATRRYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF NTSVVYKKTL FVEFTDHLFN IAKPRPPWMG LLGPTIQAEV 
                                            N41 
YDTVVITLKN MASHPVSLHA VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV LKENGPMASD PLCLTYSYLS 
 
HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ TLHKFILLFA VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR 
                                                                              N235 N239 
SLPGLIGCHR KSVYWHVIGM GTTPEVHSIF LEGHTFLVRN HRQASLEISP ITFLTAQTLL MDLGQFLLFC HISSHQHDGM 
 
EAYVKVDSCP EEPQLRMKNN EEAEDYDDDL TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE EDWDYAPLVL 
                           Y346 
APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE AIQHESGILG PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI 
 
TDVRPLYSRR LPKGVKHLKD FPILPGEIFK YKWTVTVEDG PTKSDPRCLT RYYSSFVNME RDLASGLIGP LLICYKESVD 
 
QRGNQIMSDK RNVILFSVFD ENRSWYLTEN IQRFLPNPAG VQLEDPEFQA SNIMHSINGY VFDSLQLSVC LHEVAYWYIL 
       S568 
SIGAQTDFLS VFFSGYTFKH KMVYEDTLTL FPFSGETVFM SMENPGLWIL GCHNSDFRNR GMTALLKVSS CDKNTGDYYE 
                                                                               Y718/719 
DSYEDISAYL LSKNNAIEPR SFSQNSRHPS QNPPVLKRHQ R 
 Y723  Y729                    S750 
 
Light Chain 
                                             EITRTTLQS DQEEIDYDDT ISVEMKKEDF DIYDEDENQS 
                                                             Y1664             Y1680 
PRSFQKKTRH YFIAAVERLW DYGMSSSPHV LRNRAQSGSV PQFKKVVFQE FTDGSFTQPL YRGELNEHLG LLGPYIRAEV 
 
EDNIMVTFRN QASRPYSFYS SLISYEEDQR QGAEPRKNFV KPNETKTYFW KVQHHMAPTK DEFDCKAWAY FSDVDLEKDV 
                                              N1810 
HSGLIGPLLV CHTNTLNPAH GRQVTVQEFA LFFTIFDETK SWYFTENMER NCRAPCNIQM EDPTFKENYR FHAINGYIMD 
 
TLPGLVMAQD QRIRWYLLSM GSNENIHSIH FSGHVFTVRK KEEYKMALYN LYPGVFETVE MLPSKAGIWR VECLIGEHLH 
 
AGMSTLFLVY SNKCQTPLGM ASGHIRDFQI TASGQYGQWA PKLARLHYSG SINAWSTKEP FSWIKVDLLA PMIIHGIKTQ 
 
GARQKFSSLY ISQFIIMYSL DGKKWQTYRG NSTGTLMVFF GNVDSSGIKH NIFNPPIIAR YIRLHPTHYS IRSTLRMELM 
                                 N2118 
GCDLNSCSMP LGMESKAISD AQITASSYFT NMFATWSPSK ARLHLQGRSN AWRPQVNNPK EWLQVDFQKT MKVTGVTTQG 
 
VKSLLTSMYV KEFLISSSQD GHQWTLFFQN GKVKVFQGNQ DSFTPVVNSL DPPLLTRYLR IHPQSWVHQI ALRMEVLGCE 
 
AQDLYGGGSI EPRSFGSENL YFQGSWSHPQ FEKGSHHHHH HHHHH 
 
 
CO sequence coverage (98.92%) 
Heavy Chain 
ATRRYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF NTSVVYKKTL FVEFTDHLFN IAKPRPPWMG LLGPTIQAEV 
                                            N41 
YDTVVITLKN MASHPVSLHA VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV LKENGPMASD PLCLTYSYLS 
 
HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ TLHKFILLFA VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR 
                                                                              N235 N239 
SLPGLIGCHR KSVYWHVIGM GTTPEVHSIF LEGHTFLVRN HRQASLEISP ITFLTAQTLL MDLGQFLLFC HISSHQHDGM 
 
EAYVKVDSCP EEPQLRMKNN EEAEDYDDDL TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE EDWDYAPLVL 
                           Y346 
APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE AIQHESGILG PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI 
 
TDVRPLYSRR LPKGVKHLKD FPILPGEIFK YKWTVTVEDG PTKSDPRCLT RYYSSFVNME RDLASGLIGP LLICYKESVD 
 
QRGNQIMSDK RNVILFSVFD ENRSWYLTEN IQRFLPNPAG VQLEDPEFQA SNIMHSINGY VFDSLQLSVC LHEVAYWYIL 
       S568 
SIGAQTDFLS VFFSGYTFKH KMVYEDTLTL FPFSGETVFM SMENPGLWIL GCHNSDFRNR GMTALLKVSS CDKNTGDYYE 
                                                                               Y718/719 
DSYEDISAYL LSKNNAIEPR SFSQNSRHPS QNPPVLKRHQ R 
 Y723  Y729                    S750 
 
Light Chain 
                                             EITRTTLQS DQEEIDYDDT ISVEMKKEDF DIYDEDENQS 
                                                             Y1664             Y1680 
PRSFQKKTRH YFIAAVERLW DYGMSSSPHV LRNRAQSGSV PQFKKVVFQE FTDGSFTQPL YRGELNEHLG LLGPYIRAEV 
 
EDNIMVTFRN QASRPYSFYS SLISYEEDQR QGAEPRKNFV KPNETKTYFW KVQHHMAPTK DEFDCKAWAY FSDVDLEKDV 
                                              N1810 
HSGLIGPLLV CHTNTLNPAH GRQVTVQEFA LFFTIFDETK SWYFTENMER NCRAPCNIQM EDPTFKENYR FHAINGYIMD 
 
TLPGLVMAQD QRIRWYLLSM GSNENIHSIH FSGHVFTVRK KEEYKMALYN LYPGVFETVE MLPSKAGIWR VECLIGEHLH 
 
AGMSTLFLVY SNKCQTPLGM ASGHIRDFQI TASGQYGQWA PKLARLHYSG SINAWSTKEP FSWIKVDLLA PMIIHGIKTQ 
 
GARQKFSSLY ISQFIIMYSL DGKKWQTYRG NSTGTLMVFF GNVDSSGIKH NIFNPPIIAR YIRLHPTHYS IRSTLRMELM 
                                 N2118 
GCDLNSCSMP LGMESKAISD AQITASSYFT NMFATWSPSK ARLHLQGRSN AWRPQVNNPK EWLQVDFQKT MKVTGVTTQG 
 
VKSLLTSMYV KEFLISSSQD GHQWTLFFQN GKVKVFQGNQ DSFTPVVNSL DPPLLTRYLR IHPQSWVHQI ALRMEVLGCE 
 
AQDLYGGGSI EPRSFGSENL YFQGSWSHPQ FEKGSHHHHH HHHHH 
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