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Comprehensive Proteomic 
Characterization of the Human 
Colorectal Carcinoma Reveals 
Signature Proteins and Perturbed 
Pathways
Jian-Jiang Hao1,2, Xiaofei Zhi1, Yeming Wang1, Zheng Zhang2, Zeyu Hao3, Rong Ye2, 
Zhijie Tang1, Fei Qian1, Quhui Wang1 & Jianwei Zhu1

The global change in protein abundance in colorectal cancer (CRC) and its contribution to tumorigenesis 
have not been comprehensively analyzed. In this study, we conducted a comprehensive proteomic 
analysis of paired tumors and adjacent tissues (AT) using high-resolution Fourier-transform mass 
spectrometry and a novel algorithm of quantitative pathway analysis. 12380 proteins were identified 
and 740 proteins that presented a 4-fold change were considered a CRC proteomic signature. A 
significant pattern of changes in protein abundance was uncovered which consisted of an imbalance in 
protein abundance of inhibitory and activating regulators in key signal pathways, a significant elevation 
of proteins in chromatin modification, gene expression and DNA replication and damage repair, and a 
decreased expression of proteins responsible for core extracellular matrix architectures. Specifically, 
based on the relative abundance, we identified a panel of 11 proteins to distinguish CRC from AT. The 
protein that showed the greatest degree of overexpression in CRC compared to AT was Dipeptidase 1 
(DPEP1). Knockdown of DPEP1 in SW480 and HCT116 cells significantly increased cell apoptosis and 
attenuated cell proliferation and invasion. Together, our results show one of largest dataset in CRC 
proteomic research and provide a molecular link from genomic abnormalities to the tumor phenotype.

Extensive genomic characterizations of human cancers have revealed cancer genome landscapes including a list 
of 140 candidate oncogenes and tumor suppressor genes, which are frequently mutated in tumors1–3. Alterations 
in these genes such as APC, p53 and KRAS, as well as in genes involved in the Wnt and TGF-β​ signaling pathways 
are considered as the most common initiating events of colorectal cancer (CRC)4,5. However, it is not fully under-
stood how a few or a dozen of mutated tumor suppressor genes and oncogenes drive cancers2. A recent study of 
the proteogenomic characterization of CRC demonstrated that the mRNA transcript abundance did not reliably 
predict protein abundance differences between tumors6. This study reinforced the importance of measuring the 
protein abundance alteration in CRC. Although many studies have focused on measuring the protein changes 
associated with CRC7–9, a comprehensive characterization of the CRC proteome has not been accomplished. 
We thus analyzed proteomes of 44 samples (22 paired tumors and adjacent normal tissues) using a standardized 
quantitative proteomics workflow including pre-fractionation of protein samples by SDS-gel for maximizing the 
coverage, evaluation of the completeness of proteomic profiles using ten groups of well-defined “housekeeping” 
protein complexes for ensuring data quality, spectral counting-based quantification using the unit of parts per 
million (ppm) for describing the protein abundance, and a novel pathway analysis strategy for analyzing the bio-
logical consequence of the changes of the proteome. This strategy enabled us to generate a comprehensive map of 
the CRC proteome and to identify its abnormal features.

1Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China. 
2Poochon Scientific, Frederick, Maryland 21701, USA. 3Whiting School of Engineering of Johns Hopkins University, 
Baltimore, Maryland 21218, USA. Correspondence and requests for materials should be addressed to J.-J.H. (email: 
jon.hao@poochonscientific.com) or J.Z. (email: jwzhumd@aliyun.com)

received: 27 October 2016

accepted: 10 January 2017

Published: 09 February 2017

OPEN

mailto:jon.hao@poochonscientific.com
mailto:jwzhumd@aliyun.com


www.nature.com/scientificreports/

2Scientific Reports | 7:42436 | DOI: 10.1038/srep42436

Membrane-bound Dipeptidase 1 (DPEP1, also known as microsomal dipeptidase or renal dipeptidase) is 
a zinc-dependent metalloproteinase that has been shown to process a plethora of peptides and antibiotics, as 
well as to be involved in the glutathione and leukotriene metabolism. The encoded protein is anchored to the 
membrane by a covalently attached glycosyl-phosphatidylinositol moiety and has a highly hydrophobic sequence 
located at its carboxyl terminus. In the current study, we investigated DPEP1 as a candidate marker in CRC. 
Our study not only provides a useful database for CRC biomarker discovery but also provides new insights into 
DPEP1-mediated cancer progression.

Results
Quantitative proteomic analysis reveals a significant pattern of changes in protein abundance 
in the CRC proteome.  To quantify the changes in the CRC proteome, paired tumor and AT samples were 
processed and fractionated at the protein level by SDS–polyacrylamide gel electrophoresis and at the peptide 
level by basic reversed-phase liquid chromatography and analyzed on a high-resolution Fourier-transform 
mass spectrometer (Q-Exactive Orbitrap). Approximately 44 proteomic profiles were generated by analyzing 22 
paired CRC and AT samples (Supplementary Tables 1, Supplementary Dataset 1 and 2). The integrity of the 44 
profiles was assessed based on the coverage of ten groups of 444 well-known “housekeeping” proteins or com-
plexes (Supplementary Dataset 3 and 4) and scored at an average of 92 of 100, suggesting that these profiles were 
comparable.

A total of 12,380 proteins were identified across 22 CRC and 22 AT samples, accounting for approximately 
60% of the annotated proteins in the human genome and representing the accumulated analysis results of the 
existence of a human core proteome of approximately 10,000–12,000 ubiquitously expressed proteins. Among 
these, 8,832 proteins were detected in both CRCs and ATs, 10,030 proteins were detected in ATs, and 11,183 pro-
teins were detected in CRCs (Fig. 1A and Supplementary Dataset 1 and 2).

The changes in abundance of 12,380 proteins are analyzed and summarized in Fig. 1 (Supplementary Dataset 
1 and 2). According to the variations in abundance, the 12,380 proteins were divided into three groups. The 
first group represented 41% (5,084) of the identified proteins, which constituted approximately 89% of the total 
protein mass and exhibited changes of less than 2-fold. These proteins contained high-abundance housekeep-
ing proteins, including histones, ribosomal proteins, metabolic enzymes and cytoskeletal proteins (Fig. 1C, 
Supplementary Dataset 2). The second group accounted for 5,656 proteins, which constituted approximately 1.5% 
of the total protein mass and were the least abundant. This group included 3,477 proteins, which were detected in 
either ATs or CRCs, and 2,179 proteins, which were detected in both ATs and CRCs. However, their abundance 
changes were not statistically significant (p >​ 0.01, n =​ 22) (Supplementary Dataset 2). The third group repre-
sented 12% (1640) of the identified proteins that were either overexpressed (83.5%) or decreased (16.5%) signif-
icantly by at least 2-fold in tumors (p <​ 0.01, n =​ 22), and these proteins contributed to approximately 8.7% and 
9.4% of the total protein mass for CRCs and ATs, respectively (Fig. 2A, Supplementary Dataset 5). Interestingly, 
the 1,370 proteins that were overexpressed in CRCs are generally low in abundance and have reported regulatory 
functions for various cellular processes. In contrast, most of the 270 proteins that were decreased in CRCs are 
highly abundant and are involved in cellular architecture, metabolism and colorectal function. Approximately 715 
of the 1,640 proteins were highly differentially expressed (fold change >​4, p <​ 0.01) and were considered a CRC 
proteomic signature (Fig. 1C).

To further evaluate the relevance of the changes in the CRC proteome to defined protein classifications, we 
analyzed the summed protein abundance from each class of proteins based on UniProtKB classifications (14,420 
entries classified as different molecular functions and 17,465 entries classified as different cellular components). 
The average coverage for all different classes was 67% and exhibited no apparent difference between CRC and AT 
(Fig. 2B,C, Supplementary Table 2). Interestingly, the summed protein abundances for several classes, including 
protein-binding transcription factors, nucleic acid binding transcription factors, and translation regulators, were 
significantly increased, whereas those for collagen trimers, extracellular matrix (ECM) components and extra-
cellular matrices were decreased in CRC (Fig. 2B,C, Supplementary Table 2). These changes are consistent with 
the above individual protein analysis, which implies that cancer cells grow rapidly with a less stable structural 
architecture.

The elevation of proteins required for cell proliferation in tumors.  Cell cycle progression and 
DNA replication are central processes required for normal proliferation, development and homeostasis10. To test 
whether the proteins involved in these processes are subject to change in CRCs, the summed protein abundance 
for each pathway was analyzed. The summed abundance of proteins responsible for the cell cycle, including cyc-
lins, CDKs, mitosis factors, proliferation regulators and anti-apoptosis regulators, increased by at least 50% in 
tumors, which is consistent with the view that increased anti-apoptosis and cell proliferation activities are often 
associated with tumor cells (Fig. 3B).

DNA replication machinery components were increased by greater than 100% in CRCs. The DNA damage  
repair complexes11, which include mismatch excision repair (MMR), nucleotide excision repair (NER), 
Fanconi anemia, editing and processing nucleases, base excision repair (BER), homologous recombination, 
non-homologous end joining, and other related components, were increased by at least 40% (Fig. 3A). This sig-
nificant enrichment of the DNA replication machinery could be required for the high proliferation rate of tumor 
cells, and the augmented DNA damage repair machinery might be triggered by intensive DNA replication and 
transcription events.

Elevation of chromatin modification.  The human chromatin modification complexes SWI/SNF, Mi-2/NuRD,  
CoREST, N-CoR/SMRT, and Sin3 as well as three types of enzymes, K-demethylases, K-acetyltransferases, and 
K-methyltransferases12, were significantly increased in CRCs (Fig. 3A); however, histone deacetylases exhibited 
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minor changes. As shown in Fig. 3A, the transcription control machinery13, including the general transcrip-
tional factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TFII-I, RNA Pol I, II, and III and the RNA splice-
osomes U1, U2, U4/6, U5, EJC/TREK, Complex-C, and spliceosome common components were also increased 
by greater than 50% in CRCs. Only the Prp19 complex components exhibited minor changes. These two predom-
inant changes indicated that the intensive global chromatin modifications cooperated with heavy transcription 
events in CRC. Consistent with these observations, the proteins and enzymes involved in translation and nucle-
otide metabolism pathways were overexpressed in CRCs; however, the protein folding, sorting and degradation 
machinery was enriched moderately (Fig. 3A, Supplementary Fig. 3). To further confirm the enhanced activity 
in the genome of CRC, we studied the acetylation status of histone proteins, which commonly correlates with 
genome activity14,15. As shown in Fig. 4, the acetylation of lysine residuals on the tails of histones, especially H4, 
was increased in CRC, providing direct evidence for enhanced genome activity (Supplementary Fig. 4).

Activation versus inhibition in signaling pathways.  The inhibitory molecules of the WNT pathway, 
which include secreted frizzled-related proteins, Dickkopf-related proteins, and Kremen proteins, were decreased 

Figure 1.  Proteomic characterization of the proteomes of CRC and AT. (A) A heat map depicting the 
relative abundance of 12,380 proteins identified across 44 samples (22 CRC and 22 AT). The color key indicates 
the relative abundance of each protein (0 to 1.0) across 44 samples. (B) A summary of statistical analyses of 
differentially expressed proteins (right, each color representing a category; ratio of CRC/AT was calculated 
based on the average of 22 samples). (C) Volcano plot demonstrating the fold change of protein abundance 
between CRC and AT. The x-axis represents the log2 of fold changes (CRC versus AT), and the y-axis represents 
the statistically significant p-value (−​log10 of p-value, n =​ 22).
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in CRCs (Fig. 3B). However, catenin and TCFs were increased in CRCs. TGF-β​ signaling molecules, including 
the ligands, receptors, and SMAD1-4, were enriched in CRCs. On the other hand, the TGF-β​ binding proteins 
CD109, decorin, dermatopontin, and TGF-β​1-induced transcript-1 protein, which are known as negative regula-
tors of cell proliferation16,17, were significantly decreased in CRCs.

A similar trend for the Notch and Hedgehog pathways was also observed (Fig. 3C, Supplementary Fig. 3). The 
inhibitory molecules Fringers and Numb in the Notch pathway were decreased in tumors. However, the Notch, 
Delta, gamma secretase complex (PESNEN, APH1A/B, PSEN1/2, Nicastrin and ADAMs), E3 ubiquitin-protein 
ligase, DTX3L, CSL, and co-activator SNW domain-containing protein-1 were increased in tumors. Similarly, 
Hedgehog signaling factors, including inhibitory molecules, such as PATCHs, Rab23, and the suppressor of fused 
homolog and cAMP-dependent protein kinases, were decreased in CRCs, whereas hedgehog, the smoothened 
homolog, and casein kinases were enriched.

Variation in protein levels facilitates the Warburg glycolytic switch.  We next analyzed the pro-
teins involved in energy, carbohydrate, lipid, nucleotide, and amino acid metabolism, including 1,946 protein 
entries from the KEGG pathways database. Overall, proteins involved in energy and carbohydrate metabolism 
were slightly decreased, while those involved in lipid metabolism were slightly enriched in tumors (Fig. 3C, 
Supplementary Fig. 3). Proteins and enzymes involved in purine and pyrimidine metabolism were enriched by 
greater than 30% in CRCs versus ATs, whereas the overall levels of proteins and enzymes involved in amino acid 
metabolism were not increased in tumors. Significantly, important components18 involved in aerobic glycolysis, 
including glucose transporters and the key enzymes LDH-A, pyruvate kinase PKM, fructose-2,6-bisphosphatase 
TIGAR, and glucose-6-phosphate 1-dehydrogenase (G6PD), were remarkably increased, which suggested a shift 
of energy metabolism to Warburg aerobic glycolysis (Fig. 3C and K, Supplementary Fig. 3) and the reconstruction 
of a new metabolic state for sustained cell growth.

Changes in core matrisome.  The ECM provides structural and biochemical support to the surrounding 
cells and is a major component of the tumor microenvironment19. The “core matrisome” of the ECM, including 

Figure 2.  Summary of protein abundance variation in CRC and AT. (A) Heat map depicting the comparison 
of the relative abundance of 1,640 ranked individual proteins (fold change >​2, p <​ 0.01, n =​ 22) between 22 
paired CRCs and ATs according to classified annotations. (B and C) Summary of coverage and the grouped 
protein abundance changes according to the molecular function classification (14,420 protein entries) and 
cellular component classification (17,465 protein entries). The listed numbers of proteins for each classification 
were obtained from the UniProtKB website, and the full name for each class is listed in Supplementary Table 2.
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collagens and proteoglycans, was significantly decreased by at least 40% in CRCs, except for glycoproteins, 
which exhibited minor changes (Fig. 3C and L). ECM-associated proteins, such as mucins, ECM organizers, and 
cytoskeleton-related proteins, were also decreased by at least 20%, whereas matrix metalloproteinases (MMPs) 
were increased by greater than 60% in tumors. The decrease of the core matrisome and the elevation of MMPs 
suggested that the normal ECM integrity and cell architecture were altered, which could create a favorable ECM 
environment for the abnormal growth and initiation of invasion and tumor cell metastasis. Consistent with this 
observation, many proteins promoting the EMT were overexpressed, whereas many proteins inhibiting EMT 
were decreased in tumors (Fig. 3L and Supplementary Fig. 3J). Angiogenesis20 is an important process that 

Figure 3.  The hallmarks of the proteome transition illustrated by the differential expression of proteins 
or POCs in analyzed signaling pathways or cellular processes. (A–C) Heat map panels present comparisons 
of the relative abundance of pathway protein ontology chains (POC) at an average of 22 paired CRC and AT 
samples. The averages of 22 CRCs or 22 ATs are displayed as rows, and the POCs are displayed as columns. 
(D–L) Heat map panels depict comparisons of the relative abundance of selected individual proteins (rows) in 
analyzed pathways between 22 CRC samples and 22 AT samples (columns). The ratio of the average abundance 
of 22 CRCs to that of 22 ATs is highlighted in red (up) or green (down). The color key indicates the relative 
abundance of grouped proteins (0 to 1.0) at average (n =​ 22) between CRC and AT (A–C) or the relative 
abundance of individual proteins across 44 CRC and AT samples (D–L). ECM, extracellular matrix; HH, 
hedgehog; CM, cell motility; AG, angiogenesis. Note: Supplementary Fig. 3 is the full version of the heat maps of 
all pathways analyzed.
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enables tumor growth. Consistent with this notion, receptors that activate angiogenesis were enriched in tumors, 
whereas SPON1, a vascular smooth muscle cell growth-promoting factor that inhibits angiogenesis, was signifi-
cantly decreased in tumors (Fig. 3I, Supplementary Fig. 3H).

Cell motility is mainly controlled by actin cytoskeleton dynamics and is correlated with the ECM architecture. 
Rapid actin cytoskeletal remodeling in the cell cortex, a major contributor to tumor growth and metastasis, is 
regulated by upstream signaling regulators, including Arp2/3 activators, the Arp2/3 complex, actin polymeri-
zation regulators, actin filament (branched filament) stabilizers, and destabilizers21. Although the basic building 
materials, such as actin, myosin, and polymerization regulators, exhibited minor changes, the key regulatory 
components (PAKs and destabilizers) were significantly increased in CRCs (Fig. 3C, Supplementary Fig. 3B). 
In addition, PP1 regulatory subunits and stabilizers were decreased in CRCs, while Arp2/3 complex activators, 
Arp2/3 complex, and PP1catalytic subunits were mildly increased. These changes may reflect increased actin 
cytoskeleton dynamics and unstable cellular architectures, facilitating the invasion of tumor cells.

Proteomic signature of CRC.  Our quantitative proteomic analysis of 22 paired CRCs and ATs identified 
740 significantly differentially expressed proteins (e.g. fold change >​4, p <​ 0.01) (Fig. 5A). Among them 613 
proteins had increased expression in all 22 cases of CRC patients (p <​ 0.01), while 127 proteins showed decreased 
expression (p <​ 0.01). Interestingly, although these 740 proteins encompassed about 6% of the total proteins iden-
tified, their mass was only 1.6% and 2.5% of the total mass in the CRCs and ATs, respectively. Most of the 127 
proteins decreased in CRC but enriched in AT were high-abundant proteins, which were involved in cellular 
architectures, metabolisms and colorectal functions. In contrast, most of the 613 proteins enriched in CRC were 
low-abundant proteins, which were mostly involved in the regulation of cellular processes. This explained why the 
total mass of the 740 proteins was 58% more in AT than that in CRC.

To further evaluate the signature, we investigated if the ranked 740 proteins were overlapped with published 
CRC signatures. Sadanandam et al. identified a genomic data-based 786 CRC assigner for five CRC subtypes22. 
567 proteins listed in the 786 CRC assigner were identified in this study (Fig. 5B). 136 of these proteins were dif-
ferentially expressed by at least 1.5 fold in CRCs (p <​ 0.01) including 28 of them which were significantly overex-
pressed (CRC/AT >​ 4 fold, p <​ 0.01), and 42 which were significantly decreased (CRC/AT <​ 0.25 fold, p <​ 0.01). 
The 70 proteins were included in the 740 ranked protein list. 102 proteins listed in Melo’s 146 CRC gene classifier23 
were also identified in this study. 23 of them were differentially expressed by at least 1.5 fold in CRC (p <​ 0.01), 
including 8 proteins that were changed by greater than 4 fold (p <​ 0.01) (Fig. 5C).

Many other studies had reported 1235 CRC signatures and they showed very limited overlap23. 962 proteins 
from this list were identified in this study. 225 of them were differentially expressed by at least 1.5 fold in CRC 
(p <​ 0.01), 55 proteins were overlapped with the 740 protein list. Additionally, we identified 28 well-known clin-
ical or preclinical CRC biomarkers in this study (Fig. 5C and S10). Only Prominin-1 (CD133), a CRC stem cell 
marker, met with our specification as a CRC signature (>​4 fold change, p <​ 0.01).

Vogelstein et al. summarized a list of 125 tumor driver genes2. 100 proteins from the list were identified in this 
study and 15 of them were differentially expressed by at least 1.5 fold in CRC (p <​ 0.01) (Fig. 5D), and 5 of them 
were overlapped with our ranked 740 proteins.

Figure 4.  Comparison of the acetylation of lysines at the N-terminal tail of histones between CRC and AT. 
Approximately 22 CRC and 22 AT samples are displayed as rows, and the relative abundance of each histone 
protein or the relative abundance of acetylation sites are displayed as columns. The left panel presents histone 
proteins, with each histone labeled as a different color, and the right panel depicts acetylation sites for each 
histone protein, which are the same color as in the left panel. The color key indicates the relative abundance of 
proteins or the acetylation site (0 to 1.0) across 44 samples (22 paired CRCs and ATs).
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Overall, 1721 proteins, about 70% of the above CRC genes signatures and the tumor driver genes, were identi-
fied in this study, and about 20% of these identified proteins displayed differential expressions (>​1.5 fold, p <​ 0.01). 
However, only 135 proteins were overlapped with our 740 CRC protein signature (fold change >​4, p <​ 0.01, n =​ 22).

Considering the practical reality, a small panel of protein biomarkers would have more advantages. We identi-
fied a panel of 11 proteins based on the relative abundance (mean abundance in CRC >​20 ppm) from the ranked 
740 proteins to distinguish cancer tissues from normal colorectal tissues obviously (Fig. 6A–C). The well clar-
ified tumor-associated gene CEA was used as a control gene. Two enzymes, mast cell carboxypeptidase A and 
chymase, secreted by mast cells, were significantly decreased in CRC. Nine proteins, were significantly overex-
pressed in cancer tissues. The abundance change of the 11 proteins was confirmed by immunohistochemistry 
assay (Fig. 6D).

Figure 5.  Identification of the CRC proteomic signature. Heat map depicting the relative abundance of 
ranked proteins (fold change >4, p < 0.01) identified across 44 samples (22 CRC and 22 AT). Twenty-two 
tumors and 22 AT samples are displayed as columns, and proteins are displayed as rows. The color key indicates 
the relative abundance of proteins (0 to 1.0) across 44 samples. The heat map presents the differential expression 
of (A) 715 CRC protein signatures across 44 samples, (B) 567 proteins (listed in Sadanandam 786 CRC assigner) 
identified across 44 samples, (C) 102 proteins (listed in Melo CCSs 146 gene classifier) identified across 44 
samples, and (D) 100 proteins (listed in Vogelstein 125 tumor driver genes) identified across 44 samples. The 
details of the data is in Dataset 6.
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In vitro functional study of DPEP1.  Among the 11 identified proteins, Dipeptidase 1 (DPEP1) and 
Ladinin-1 (LAD1) were overexpressed in CRC with higher fold change (DPEP1, >​1000 folds; LAD1, 188 folds). 
Given that LAD1 is a basement membrane protein and secreted by keratinocytes24, the up-regulation of LAD1 
protein in CRC might be a secondary event. Thus we focused on the function of DPEP1 in CRC. To evalu-
ate the functional roles of DPEP1 in CRC cells, we examined the effects of DPEP1 on cell proliferation, apop-
tosis and invasion (Fig. 7). CRC cell lines SW480, HCT116 and HT29 showed high DPEP1 expression levels, 
whereas human colon normal epithelium cell line FHC did not express DPEP1 protein (Fig. 7A). Transfection 
of SW480 and HCT116 cells with siRNA against DPEP1 resulted in a remarkable reduction of cell growth com-
pared with control siRNA-transfected cells (Fig. 7B). Interestingly, overexpression of DPEP1 in FHC cells signifi-
cantly enhanced cell proliferation (Fig. 7B). Flow cytometry revealed that siRNA silcecing of DPEP1 significantly 
increased cell apoptosis (Fig. 7C). In addition, siRNA-mediated silencing of DPEP1 significantly reduced the 

Figure 6.  Biomarkers for human colorectal carcinoma. (A) Heat map showing differential expression of 
11 protein biomarkers panel plus CEA across 22 AT, 12 TNM I&II tumors and 10 TNM III&IV tumors. The 
well-known CRC marker CEA was used as a comparison. It was not included in the 11 protein panel because 
its abundance change between CRCs and ATs was less than 4 fold. (B) Comparison of the average of protein 
abundance (ppm) of 12 biomarkers among 22 ATs, 12 TNM I&II tumors, and 10 TNM III&IV tumors. The 
average for AT based on 22 AT samples, for tumors based on 12 TNM I&II tumors and 10 TNM III&IV tumors 
respectively. (C) Heat map showing differential expression of well-known CRC biomarkers across 22 AT,  
12 TNM I&II tumors and 10 TNM III&IV tumors. The colour key indicates the relative protein abundance  
(0 to 1.0) across 44 samples. Tumors and ATs are displayed as rows and proteins are displayed as columns.  
(D) Immunohistochemistry showing differential expression of the panel of 11 proteins and CEA in CRCs and 
ATs. Magnification of all images was ×​200.
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Figure 7.  Functional study of DPEP1 in CRC cells. (A) Proteins prepared from CRC cell lines LOVO, HT29, 
DLD1, SW480, Caco2 and HCT116, and human colon normal epithelium cell line FHC were subjected to 
Western blot analysis. GAPDH was used as the loading control. After transfection with DPEP1 siRNA, Control 
siRNA, Vector plasmid and DPEP1-expression plasmid in the cells, (B) MTT viability assay, (C) Flow cytometry 
and (D) Transwell assay were used to detect the cell proliferation, cell apoptosis and cell invasion ability, 
respectively. ***P <​ 0.001.
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invasive ability of SW480 cells and HCT116 cells, and overexpression of DPEP1 in LOVO cells significantly 
enhanced the invasion ability (Fig. 7D). These results suggest that DPEP1 plays a vital role in CRC development.

Discussion
Using a combination of comparative analysis of paired tumors and adjacent normal tissues and a novel algorithm 
of pathway analysis, we quantified the changes of the CRC proteome and identified the hallmarks of the proteome 
transition as important molecular events that occur during tumorigenesis. This discovery provides direct molec-
ular evidence confirming the conceptual hallmarks of cancer, the acquired biological capabilities defined earlier25, 
and supports a model explaining how genomic alterations drive cancers. When molecular malfunction events, 
such as mutations in tumor driver genes, chromosomal instability and microsatellite instability, or environmental 
factors, occur and accumulate, a series of changes in gene expression may be initiated, resulting in the proteomic 
transition and eventually affording a selective growth advantage to the tumor cell. In addition, the approach we 
used demonstrates the feasibility of comprehensively measuring the changes of protein abundance in a human 
disease proteome and systematically analyzing their biological significances.

Proteomic studies of CRC have been conducted using surgically resected tissues to develop biomarkers and 
identify drug targets26,27. However, the reliable quantification of the changes in tumor proteome and the interpre-
tation of a large proteomic data set remain challenging. The present CRC proteomic study was characterized by 
the use of Nanospray LC/MS/MS with a standardized quantitative proteomics workflow, including the maximal 
protein coverage through pre-fractionation of protein samples by SDS gel, the data quality control through evalu-
ating the coverage of ten groups of well-defined “housekeeping” proteins, normalized spectral abundance factors 
(NSAFs)-based quantification to describe protein abundance, and a novel algorithm to perform quantitative 
pathway analysis.

In the present study, we achieved an analytical depth of 12380 proteins identified in 22 paired CRC and AT 
samples, to our knowledge the largest tumor proteome data set to date. In the subsequent analyses, we identified 
715 significantly differentially expressed proteins (e.g. fold change >​4, p <​ 0.01). Among them, 613 proteins had 
increased expression in all 22 cases of CRC patients, while 127 proteins showed decreased expression. To further 
confirm the signature, we also investigated if the ranked 715 proteins were overlapped with published CRC signa-
tures. Sadanandam et al. identified a genomic data-based 786 CRC assigner for five CRC subtypes22. 567 proteins 
listed in the 786 CRC assigner were identified in our study and 70 proteins were included in our 715 ranked protein 
list. Moreover, 102 proteins listed in Melo’s 146 CRC gene classifier23 were also identified in this study. 962 pro-
teins from De Sousa’s list23 were identified in our study and 55 proteins were overlapped with the 715 protein list. 
Vogelstein et al. summarized a list of 125 tumor driver genes2. 100 proteins from the list were identified in our study 
and 5 of them were overlapped with our ranked 715 proteins. The partial overlap of potential biomarkers between 
our study and previous reports supports the feasibility of our standardized quantitative proteomics workflow.

Of note, among the upregulated proteins in CRC tumor tissues were low abundant proteins which are respon-
sible for malignant biological capabilities. For instance, DNA replication machinery components were increased 
by greater than 100% in CRC, and DNA damage repair complexes were increased by at least 40%. Cancer has 
long been associated with histone acetylation, which is known to enhance the transcription activity28. Our results 
showed the acetylation of histones especially H4 was increased in CRC, indicating that DNA replication coop-
erating with chromatin modifications contributed to the high genome activity in CRC. Deregulation of actin 
cytoskeleton and ECM-associated proteins were observed in CRC, which is consistent with previous studies29.

In contrast, among the down-regulated proteins in CRC tumor tissues were high abundant proteins which 
are responsible for cellular architecture, metabolism and colorectal function. The ECM can provide structural 
and biochemical support to cells and maintain cell polarity30. In the present study, the core components includ-
ing collagens and proteoglycans were significantly decreased in CRC, as well as ECM-associated proteins, such 
as mucins, ECM organizers, and cytoskeleton-related proteins. The notion that altering normal ECM integ-
rity and cell architecture could promote cancer cell invasion, which was consistent with our results, led to an 
increased interest in EMT process. As expected, many proteins inhibiting EMT were decreased in CRC, whereas 
EMT-promoting proteins were elevated.

Specifically, based on the relative abundance (mean abundance in CRC >​20 ppm), we identified a panel of 
11 proteins from the ranked 715 proteins to distinguish cancer tissues from normal colorectal tissues obviously. 
Among the 11 identified proteins, Dipeptidase 1 (DPEP1) and Ladinin-1 (LAD1) were overexpressed in CRC 
with higher fold change (DPEP1, >​1000 folds; LAD1, 188 folds). Given that LAD1 is a basement membrane pro-
tein and secreted by keratinocytes24, the up-regulation of LAD1 protein in CRC might be a secondary event. Thus 
we focused on the function of DPEP1 in CRC. Membrane-bound DPEP1 is a zinc-dependent metalloproteinase 
that has been shown to process a plethora of peptides and antibiotics, as well as to be involved in the glutathione 
and leukotriene metabolism31,32. DPEP1 has been identified as a prognostic gene of colorectal cancer33. In the cur-
rent study, we showed that DPEP1 was overexpressed in CRC, and knockdown of DPEP1 in SW480 and HCT116 
cells significantly increased cell apoptosis and attenuated cell proliferation and invasion. Our study not only 
provides a useful database for CRC biomarker discovery but also provides new insights into DPEP1-mediated 
cancer progression.

In conclusion, we used a proteomics-driven approach to provide a comprehensive view of the CRC tissue pro-
teome. This study provides insights into the deregulated proteins in CRC tumors that could act as likely drivers of 
CRC onset and progression, and may serve as potential CRC markers.

Methods
Tumor and adjacent tissue samples.  All specimens were collected from patients from the Affiliated 
Hospital of Nantong University (Nantong, China) and Peking Union Medical College Hospital (Beijing, China) 
in accordance with approved human subject guidelines authorized by the Medical Ethics and Human Clinical 



www.nature.com/scientificreports/

1 1Scientific Reports | 7:42436 | DOI: 10.1038/srep42436

Trial Committee at the hospitals. Written informed consents were obtained from all subjects. Following surgery, 
the tumor and adjacent normal tissue (AT) specimens were collected in separate tubes, maintained on dry ice 
during transportation, and stored at −​80 °C before further processing. Twenty-two pairs of cancerous and adja-
cent normal tissue specimens were collected from 22 individual patients (Supplementary Table 1). AT specimens 
were obtained from the distal edge of the resection at least 5 cm from the tumor. A panel of known differentially 
expressed proteins was used to confirm the AT specimens (Supplementary Fig. 2). All CRC patients had histolog-
ically verified adenocarcinoma of the colon or rectum that was confirmed by pathologists. Patient characteristics 
were obtained from pathology records. Subjects with a history of other malignant diseases or infectious disease or 
who underwent surgery 6 months prior to the start of this research were excluded from this retrospective study.

Preparation for protein extraction, separation of proteins, and in-gel trypsin digestion.  Total 
protein extraction from fresh frozen tissue specimens was prepared using the following methods. Frozen tissue 
samples (0.05–0.1 gram) were cut into small pieces (1 mm size) using a clean sharp blade and transferred to 
1.5-ml tubes. A 0.4-ml quantity of lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM 
EGTA, 1% Triton X-100, and protease inhibitor cocktail pill) was added to each sample tube. The tissues were 
homogenized using a Dunce homogenizer. After homogenization, 50 μ​l of 10% SDS and 50 μ​l of 1 M DTT were 
added to the mixture followed by incubation at 95 °C for 10 min. After incubation, the extraction was sonicated 
to further break down the DNA. Sonicated mixtures were centrifuged at 15,000 ×​ g for 10 min. Supernatants were 
collected and stored at −​80 °C for further analysis. The protein concentration of the supernatants was determined 
with a BCA™​ Reducing Reagent compatible assay kit (Pierce, Grand Island, NY, USA).

Equal quantities of protein (133 μ​g) from each sample were loaded onto a NuPAGE 4–12% Bis-Tris Gel (Life 
Technologies Corporation, Grand Island, NY, USA). After electrophoresis, the gel was stained with Simply Blue 
Safe Stain (Life Technologies Corporation) and subsequently de-stained. To prepare in-gel trypsin-digested pep-
tides, the de-stained gel was washed with ion-free water thrice, and each lane representing one sample was sliced 
horizontally into 16 slices. Each slice was diced into tiny pieces (1–2 mm) and placed into 1.5-ml centrifuge tubes. 
Proteins in the gel were treated with DTT for reduction, followed by iodoacetamide for alkylation and further 
digestion with trypsin in 25 mM NH4HCO3 solution. The digested protein was extracted as described elsewhere. 
The extracted peptides were dried and reconstituted in 20 μ​l of 0.1% formic acid before nanospray LC/MS/MS 
analysis was performed.

Nanospray LC/MS/MS analysis.  Sixteen tryptic peptide fractions from one specimen sample were ana-
lyzed sequentially using a Thermo Scientific Q-Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer 
(Thermo Electron, Bremen, Germany) equipped with a Thermo Dionex UltiMate 3000 RSLCnano System 
(Thermo Dionex, Sunnyvale, CA, USA). Tryptic peptide samples were loaded onto a peptide trap cartridge at a 
flow rate of 5 μ​l/min. The trapped peptides were eluted onto a reversed-phase 25-cm C18 PicoFrit column (New 
Objective, Woburn, MA) using a linear gradient of acetonitrile (3–36%) in 0.1% formic acid. The elution duration 
was 110 min at a flow rate of 0.3 μ​l/min. Eluted peptides from the PicoFrit column were ionized and sprayed into 
the mass spectrometer using a Nanospray Flex Ion Source ES071 (Thermo) under the following settings: spray 
voltage 1.6 kV and capillary temperature 250 °C. The Q Exactive instrument was operated in the data-dependent 
mode to automatically switch between full scan MS and MS/MS acquisition. Survey full scan MS spectra (m/z 
300–2,000) were acquired in the Orbitrap with 70,000 resolution (m/z 200) after the accumulation of ions to a 
3 ×​ 106 target value based on predictive AGC from the previous full scan. Dynamic exclusion was set to 20 s. The 
12 most intense multiply charged ions (z ≥​ 2) were sequentially isolated and fragmented in the Axial Higher 
Energy Collision-induced Dissociation (HCD) cell using normalized HCD collision energy at 25% with an AGC 
target of 1e5 and a maximum injection time of 100 ms at 17,500 resolution.

LC/MS/MS data analysis.  The raw MS files were analyzed using the Thermo Proteome Discoverer 1.4.1 
platform (Thermo Scientific, Bremen, Germany) for peptide identification and protein assembly. For each spec-
imen sample, 16 raw MS files obtained from 16 sequential LC-MS analyses were grouped for a single database 
search against the Human UniProtKB human protein sequence databases (20,597 entries, 12/20/2013) based on 
the SEQUEST and percolator algorithms through the Proteome Discoverer 1.4.1 platform. The carbamido meth-
ylation of cysteines was set as a fixed modification. The minimum peptide length was specified as 5 amino acids. 
The precursor mass tolerance was set to 15 ppm, whereas the fragment mass tolerance was set to 0.05 Da. The 
maximum false peptide discovery rate was specified as 0.01. The resulting Proteome Discoverer Report contains 
all assembled proteins (a proteome profile) with peptide sequences and matched spectrum counts.

Publically available MS raw data files used to evaluate the methods.  Ninety-four sets of MS raw 
data files from The Cancer Genome Atlas (TCGA) CRC cancer program and 12 sets of MS raw datasets from 
the TCGA breast cancer program were downloaded from https://cptac-data-portal.georgetown.edu/cptacPub-
lic/. Four sets of MS raw datasets from the CHPP proteome were downloaded from http://dx.doi.org/10.6019/
PXD000529/.

Protein quantification.  The relative abundance for each identified protein in each proteome profile was 
calculated using the normalized spectral abundance factors (NSAFs) method34,35. To quantitatively describe the 
relative abundance, ppm (parts per million) was chosen as the unit with a total 1,000,000 ppm assigned to each 
proteome profile and was calculated based on its normalized NSAF.

The ppm (part per million) was calculated as follows:

https://cptac-data-portal.georgetown.edu/cptacPublic/
https://cptac-data-portal.georgetown.edu/cptacPublic/
http://dx.doi.org/10.6019/PXD000529/
http://dx.doi.org/10.6019/PXD000529/
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where
RCN is the relative concentration of protein N in the proteome of the test sample;
NSAFN is the protein’s normalized spectral abundance factor; and
N is the protein index.
Normalized spectral abundance factors (NSAFs) were calculated as follows:
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where
N is the protein index;
SN is the number of peptide spectra matched to the protein;
LN is the length of protein N (number of amino acid residues); and
n is the total number of proteins in the input database (proteome profile for one specimen sample).
The MEAN, STDEV, and paired T-test values (p-values) were calculated using Microsoft Excel. For the lowest 

abundant proteins the Fisher Exact Test p values were calculatedby analysis of detectable or undetectable of these 
proteins in 22 CRCsversus 22 ATs. The ratio of CRC versus AT was defined as 1,000 or 0.001 if the protein was not 
identified in AT or CRC samples, respectively.

To evaluate the ppm quantification method, we compared the ppm variation ranges among of subunits of four 
complexes with published Beck’s copy numbers data36. The relative protein abundance in ppm was calculated 
based on NSAFs and was compared with the published relative abundance calculated in Beck’s copy number. 
All subunits from four housekeeping protein complexes, including the Arp2/3 complex (7 subunits plus one iso-
form), the COP9 complex (8 subunits plus one isoform), and the proteasome (17 subunits) and TCA 17 enzymes, 
were used for comparison. As shown in Figure S6, the dynamic range of relative abundance among the mem-
bers of a complex quantified using ppm was considerably reduced compared to that of Beck’s copy number. The 
dynamic range between the minimum and maximum for the four tested complexes exhibited 4- to 19-fold differ-
ences according to spectrum count-based measurements, whereas 9- to 600-fold differences were noted accord-
ing to the published Beck’s copy number. This comparison indicated that the relative protein abundance measured 
based on spectrum count quantification would be closer to the real situation and that the housekeeping protein 
complexes could be used as the parameter to evaluate the “quality” of a proteome profile generated thereof.

Evaluation of the comparative proteomic profiling workflow.  The standardized spectral 
counting-based label-free quantitative proteomics workflow (Supplementary Fig. 1) described above was eval-
uated by examining the coefficients of variation (CVs). The CVs caused either by the LC-MS/MS system or by 
sample preparation were determined. The CVs caused by the inherent LC-MS/MS system (system error) included 
the nanoLC separation and the mass spectrometry measurement stability along with any potential inconsistencies 
related to the bioinformatic extractions of peptides by the proteome discoverer software. To define the CV caused 
by different LC/MS/MS runs, a set of 16 fractions prepared from a sample were run sequentially in duplicate. Two 
independent experiments were performed. As shown in Figure S7, the CV caused by the LC-MS system varied in 
reference to the relative concentration of proteins identified. The LC-MS/MS system caused the CV for the higher 
abundance proteins to be considerably reduced compared with the CV of the less abundant proteins. For example, 
the CV was less than 5% if the relative abundance of identified proteins was more than 1,000 ppm, but the CV 
was near 78% if the relative concentration of identified proteins was between 1 to 10 ppm due to the limitation 
of the mass spectrometer in detecting low-concentration peptides from a mixture. The average CV for all iden-
tified proteins between two independent analyses was 48% ±​ 27%. Because the lowest abundant proteins were 
mostly identified by either one independent analysis, the average CV for these proteins (<​1 ppm) was increased 
(128% ±​ 40%). The average CV for all proteins with >​1 ppm, which represented greater than 90% of identified 
proteins, was 28% ±​ 24%. Next, we evaluated the variation caused by sample processing by analyzing the same 
sample processed in triplicate. The average CV for proteins >​1 ppm was 42.2% ±​ 27.5%. Given that system var-
iation was inherent and independent of the sample, the CV caused by sample processing could be deduced by 
subtracting the system CV. Manual sample processing caused an average of 15% CV. In all analyses, the CV values 
and change patterns were similar, indicating that the proteomic workflow was reliable and repeatable.

Evaluation of the “quality” of proteome profiles.  Due to instrument limitations and the wide dynamic 
range of protein abundances, the most current LC/MS/MS settings were unable to recover the entire proteome, 
particularly the lowest abundance proteins in one experiment. Hence, development of an approach allowing eval-
uation of the integrity of a set of proteome profiles in an unbiased way is highly desirable. To achieve this goal, we 
focused on ten groups of well-characterized “housekeeping” protein complexes with the assumption that these 
proteins are essential for all live cells and that their detections would serve as an internal quality control for a set 
of proteomic profiles. Ten groups of well-known “housekeeping” protein complexes consisting of 444 proteins, 
including 359 unique proteins and 85 isoforms or subtypes (Supplementary Dataset 3), included the Arp2/3 
complex (8 subunits plus alpha and beta actins), 86 (79 and 7 isoforms) cellular (60S and 40S) ribosomal proteins, 
77 mitochondrial (28S and 39S) ribosomal proteins, nuclear pore complex 42 (38 subunits, GTP-binding nuclear 
protein Ran, Ran GTPase-activating protein 1 (RAGP1), Ran-specific GTPase-activating protein (RANG), 
Ran-binding protein 3 (RANB3)), 5 histones (H1 (9 subtypes), H2A (17 subtypes), H2B (17 subtypes), H3 (5 sub-
types) and H4), proteasome complex (17 subunits), COP9 signalosome complex (9 subunits), TCA enzymes (17 
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key enzymes), mitochondrial respiratory chain complexes I–V (102 subunits), V-type proton (ATPase complex, 
14 subunits consisting 24 isoforms), and Na+​/K+​-ATPase (sodium-potassium pump, 2 subunits, 7 isoforms). 
A score (0 to 100) was assigned based on the percentage of the 444 “housekeeping” proteins identified in a given 
profile. On average, 44 proteome profiles generated in this study were scored at 92, suggesting a consistent quality 
with all these profiles. To demonstrate the feasibility of this evaluation method, we assessed two sets of publically 
available MS raw data files (http://proteomics.cancer.gov/). One set of 94 MS raw data files (94 CRC samples) 
from the TCGA-CRC cancer program was scored at an average of 80.3. An additional set of 12 MS raw data files 
from the TCGA-breast cancer program was scored at an average of 98.5.

We next assessed the quality of a proteome profile based on the distribution of its protein population. The 
distribution of identified proteins per concentration range was analyzed using the Excel-histogram function. The 
average abundance for each identified protein was calculated as described above. The distribution of all identified 
12,380 proteins was normal, with a major peak and a minor peak representing two populations. The major peak 
represented 62% (CRC) and 60% (AT) of identified proteins with a relative abundance greater than 1 ppm, and 
the minor peak represented approximately 38% (CRC) and 40% (AT) of identified proteins with an abundance 
less than 1 ppm. The majority of proteins in the minor peak were randomly identified with one or a few PSM 
across 22 CRC samples or 22 AT samples (Supplementary Dataset 1). To further evaluate the method, 94 sets of 
MS raw profiles from the TCGA-CRC cancer program, 12 sets of MS raw datasets from the TCGA-breast can-
cer program, and 4 sets of MS raw datasets from CHPP program were analyzed. The distributions of identified 
proteins in these studies exhibited the same normal distribution patterns (Supplementary Fig. 5, Supplementary 
Dataset 7).

Pathway analysis.  The cell’s functions are executed and regulated by the entire set of proteins (the pro-
teome). The regulation of different cellular functions has been categorized into a number of pathways, such as the 
Wnt signaling pathway and the TGF signaling pathway. In each pathway, the components are generally named 
according to their function, including ligands, receptors, activating regulators, inhibitory regulators, and effec-
tors. To measure the activation strength of a pathway, the protein molecules that belong to ligands, receptors, 
activating regulators, or inhibitory regulators were grouped as the pathway protein ontology chain (POC), and 
their relative abundances (ppm) were summed. Based on the summed abundance of each POC, the activation 
strength or activation status of a pathway could be compared between two proteome profiles. The proteins listed 
for all analyzed pathways and processes were obtained from the KEGG pathway database (http://www.genome.
jp/kegg/pathway.html), and their functional annotation was manually confirmed using the UniProtKB protein 
database and the NCBI protein database or available publications. The proteins for all analyzed pathways are listed 
in Supplementary Dataset 3.

Proliferation assay.  Cells (2000/well) were seeded into 96-well plates and stained at the indicated time 
point with 100 μ​l sterile 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT; Sigma, St. Louis, 
MO, USA) dye (0.5 mg/ml) for 4 h at 37 °C, followed by removal of the culture medium and the addition of 150 μ​l  
dimethyl sulfoxide (Sigma). The absorbance was measured at 570 nm, with 655 nm used as the reference wave-
length. All tests were performed in triplicate.

Apoptosis assay.  Cells were stained with Apoptosis Detection Kit (Becton Dickinson, Franklin Lakes, 
USA) according to the manufacturer’s instructions. Cells were then tested on a FACScan flow cytometer (Becton 
Dickinson, Franklin Lakes, USA). All tests were performed in triplicate.

Invasion assay.  Invasion assays were performed with 24-well BioCoat Matrigel Invasion Chambers (BD) 
according to the manufacturer’s instructions. Briefly, 5 ×​ 104 cells were seeded into 8 μ​m pore inserts in triplicate 
wells and incubated for 24 h. The invaded cells in lower filters were fixed in methanal and stained in crystal violet 
(Sigma) followed by counting under microscope. The data are to be expressed as the percent invasion through 
the Matrigel Matrix and membrane relative to the migration through the Control membrane (not coated with 
matrigel). All tests were performed in triplicate.

Construction of small interfering RNA and recombinant plasmids.  For the gene knockdown of 
DPEP1, small interfering RNA was synthesized by Invitrogen (Thermo Fisher Scientific Inc., Waltham, MA).  
SW480 cells and HCT116 cells were transfected with DPEP1-specific siRNA (sense: GGAGGUUCU 
UCUACUCGCCtt, antisense: GGCGAGUAGAAGAACCUCCtt) and control siRNA using Lipofectamine 
RNAiMAX reagents (Invitrogen, Grand Island, NY) according to the manufacturer’s protocol.

For the construction of DPEP1 recombinant plasmid, pcDNA3.1 (Invitrogen, Shanghai, China) was used. 
The full-length ORF of DPEP1 (1236 bp, NM_001128141.2) was amplified from cDNA of SW480 cells. The 
primers were as follows: forward, EcoRI-5′​-AGAGAATTCATGTGGAGCGGATGGTGGCT-3′​; reverse,  
BamHI-5′​-AGAGGATCCAGTGTCCTCTCTGTCTGTCT-3′​.

Statistical analysis.  Each experiment was repeated at least three times throughout the study. Data were 
reported as the mean ±​ SD. Statistical analysis was performed with SPSS software (SPSS Standard version 13.0; 
SPSS, Chicago, IL). P-value <​ 0.05 was considered statistically significant.
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